Learning Drifting Concepts with Partial User Feedback

نویسنده

  • Ralf Klinkenberg
چکیده

The task of information filtering is to classify texts from a stream of documents into relevant and irrelevant, respectively, with respect to a particular category or user interest, which may change over time. A filtering system should be able to adapt to such concept changes and to cope the problem of users giving only partial feedback. This paper explores methods to recognize concept changes and to maintain windows on the training data, whose size is either fixed or automatically adapted to the current extent of concept change. Experiments with two simulated concept drift scenarios based on real-world text data and four learning methods are performed to evaluate three indicators for concept changes and to compare approaches with fixed and adjustable window sizes, respectively, to each other and to learning on all previously seen examples. Additional experiments test the adaptive window size approach with four simulated user behaviours with partial feedback in the two aforementioned scenarios. Even using only a simple window on the data already improves the performance of the classifiers significantly as compared to learning on all examples. For most of the classifiers, the window adjustments lead to a further increase in performance compared to windows of fixed size. The chosen indicators allow to reliably recognize concept changes, even if only partial user feedback is available.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

Web pages ranking algorithm based on reinforcement learning and user feedback

The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...

متن کامل

RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features

Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...

متن کامل

Adaptation to Drifting User's Interests

In recent years, many systems have been developed which aim at helping users to find pieces of information or other objects that are in accordance with their personal interests. In these systems, machine learning methods are often used to acquire the user interest profile. Frequently user interests drift with time. The ability to adapt fast to the current user's interests is an important featur...

متن کامل

Believable Visual Feedback in Motor Learning Using Occlusion-based Clipping in Video Mapping

Gait rehabilitation systems provide patients with guidance and feedback that assist them to better perform the rehabilitation tasks. Real-time feedback can guide users to correct their movements. Research has shown that the quality of feedback is crucial to enhance motor learning in physical rehabilitation. Common feedback systems based on virtual reality present interactive feedback in a monit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999